Exercise 3.4.2

Suppose that $f(x)$ and $d f / d x$ are piecewise smooth. Prove that the Fourier series of $f(x)$ can be differentiated term by term if the Fourier series of $f(x)$ is continuous.

Solution

The fact that $f(x)$ and $d f / d x$ are piecewise smooth (on the interval $-L \leq x \leq L$) means that they each have a Fourier series representation.

$$
\begin{align*}
f(x) & =A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}\right) \tag{1}\\
\frac{d f}{d x} & =C_{0}+\sum_{n=1}^{\infty}\left(C_{n} \cos \frac{n \pi x}{L}+D_{n} \sin \frac{n \pi x}{L}\right) \tag{2}
\end{align*}
$$

The coefficients in equation (1) are known.

$$
\begin{aligned}
A_{0} & =\frac{1}{2 L} \int_{-L}^{L} f(x) d x \\
A_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
B_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

The aim is to show that

$$
C_{0}=0 \quad \text { and } \quad C_{n}=\frac{n \pi}{L} B_{n} \quad \text { and } \quad D_{n}=-\frac{n \pi}{L} A_{n}
$$

To get C_{0}, integrate both sides of equation (2) with respect to x from $-L$ to L.

$$
\int_{-L}^{L} \frac{d f}{d x} d x=\int_{-L}^{L}\left[C_{0}+\sum_{n=1}^{\infty}\left(C_{n} \cos \frac{n \pi x}{L}+D_{n} \sin \frac{n \pi x}{L}\right)\right] d x
$$

Evaluate the integral on the left, split up the integral on the right, and bring the constants in front.

$$
f(L)-f(-L)=C_{0} \underbrace{\int_{-L}^{L} d x}_{=2 L}+\sum_{n=1}^{\infty}(C_{n} \underbrace{\int_{-L}^{L} \cos \frac{n \pi x}{L} d x}_{=0}+D_{n} \underbrace{\int_{-L}^{L} \sin \frac{n \pi x}{L} d x}_{=0})
$$

If the Fourier series of $f(x)$ is continuous, then $f(L)=f(-L)$.

$$
0=C_{0}(2 L)
$$

Therefore,

$$
C_{0}=0 .
$$

To get C_{n}, multiply both sides of equation (2) by $\cos \frac{p \pi x}{L}$, where p is an integer,

$$
\frac{d f}{d x} \cos \frac{p \pi x}{L}=C_{0} \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty}\left(C_{n} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}+D_{n} \sin \frac{n \pi x}{L} \cos \frac{p \pi x}{L}\right)
$$

and then integrate both sides with respect to x from $-L$ to L.

$$
\begin{aligned}
\int_{-L}^{L} \frac{d f}{d x} \cos \frac{p \pi x}{L} d x & =\int_{-L}^{L}\left[C_{0} \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty}\left(C_{n} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}+D_{n} \sin \frac{n \pi x}{L} \cos \frac{p \pi x}{L}\right)\right] d x \\
& =C_{0} \underbrace{\int_{-L}^{L} \cos \frac{p \pi x}{L} d x}_{=0}+\sum_{n=1}^{\infty}(C_{n} \int_{-L}^{L} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L} d x+D_{n} \underbrace{\int_{-L}^{L} \sin \frac{n \pi x}{L} \cos \frac{p \pi x}{L} d x}_{=0})
\end{aligned}
$$

The third integral on the right is zero because the sine and cosine functions are orthogonal. The second integral only yields a nonzero result if $n=p$.

$$
\int_{-L}^{L} \frac{d f}{d x} \cos \frac{n \pi x}{L} d x=C_{n} \int_{-L}^{L} \cos ^{2} \frac{n \pi x}{L} d x
$$

Use integration by parts on the left and evaluate the integral on the right.

$$
\begin{gathered}
\left.f(x) \cos \frac{n \pi x}{L}\right|_{-L} ^{L}-\int_{-L}^{L} f(x) \frac{d}{d x}\left(\cos \frac{n \pi x}{L}\right) d x=C_{n}(L) \\
f(L) \cos n \pi-f(-L) \cos (-n \pi)-\int_{-L}^{L} f(x)\left(-\frac{n \pi}{L} \sin \frac{n \pi x}{L}\right) d x=C_{n}(L) \\
{[f(L)-f(-L)] \cos n \pi+n \pi\left[\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x\right]=C_{n}(L)}
\end{gathered}
$$

If the Fourier series of $f(x)$ is continuous, then $f(L)=f(-L)$.

$$
n \pi\left(B_{n}\right)=C_{n}(L)
$$

Therefore,

$$
C_{n}=\frac{n \pi}{L} B_{n} .
$$

To get D_{n}, multiply both sides of equation (2) by $\sin \frac{p \pi x}{L}$, where p is an integer,

$$
\frac{d f}{d x} \sin \frac{p \pi x}{L}=C_{0} \sin \frac{p \pi x}{L}+\sum_{n=1}^{\infty}\left(C_{n} \cos \frac{n \pi x}{L} \sin \frac{p \pi x}{L}+D_{n} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L}\right)
$$

and then integrate both sides with respect to x from $-L$ to L.

$$
\begin{aligned}
\int_{-L}^{L} \frac{d f}{d x} \sin \frac{p \pi x}{L} d x & =\int_{-L}^{L}\left[C_{0} \sin \frac{p \pi x}{L}+\sum_{n=1}^{\infty}\left(C_{n} \cos \frac{n \pi x}{L} \sin \frac{p \pi x}{L}+D_{n} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L}\right)\right] d x \\
& =C_{0} \underbrace{\int_{-L}^{L} \sin \frac{p \pi x}{L} d x}_{=0}+\sum_{n=1}^{\infty}(C_{n} \underbrace{\int_{-L}^{L} \cos \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x}_{=0}+D_{n} \int_{-L}^{L} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x)
\end{aligned}
$$

The second integral on the right is zero because the sine and cosine functions are orthogonal. The third integral only yields a nonzero result if $n=p$.

$$
\int_{-L}^{L} \frac{d f}{d x} \sin \frac{n \pi x}{L} d x=D_{n} \int_{-L}^{L} \sin ^{2} \frac{n \pi x}{L} d x
$$

Use integration by parts on the left and evaluate the integral on the right.

$$
\begin{gathered}
\left.f(x) \sin \frac{n \pi x}{L}\right|_{-L} ^{L}-\int_{-L}^{L} f(x) \frac{d}{d x}\left(\sin \frac{n \pi x}{L}\right) d x=D_{n}(L) \\
f(L) \sin n \pi-f(-L) \sin (-n \pi)-\int_{-L}^{L} f(x)\left(\frac{n \pi}{L} \cos \frac{n \pi x}{L}\right) d x=D_{n}(L) \\
{[f(L)+f(-L)] \sin n \pi-n \pi\left[\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x\right]=D_{n}(L)} \\
-n \pi\left(A_{n}\right)=D_{n}(L)
\end{gathered}
$$

Therefore,

$$
D_{n}=-\frac{n \pi}{L} A_{n}
$$

The Fourier series of $f(x)$ can be differentiated term by term if the Fourier series of $f(x)$ is continuous. But even if it's not continuous, the Fourier series of $d f / d x$ can still be written using the following formulas.

$$
\begin{aligned}
C_{0} & =\frac{1}{2 L}[f(L)-f(-L)] \\
C_{n} & =\frac{(-1)^{n}}{L}[f(L)-f(-L)]+\frac{n \pi}{L} B_{n} \\
D_{n} & =-\frac{n \pi}{L} A_{n}
\end{aligned}
$$

